New Generalized Hermite–Hadamard–Mercer’s Type Inequalities Using (k, ψ)-Proportional Fractional Integral Operator

نویسندگان

چکیده

In this paper, by using Jensen–Mercer’s inequality we obtain Hermite–Hadamard–Mercer’s type inequalities for a convex function employing left-sided (k, ψ)-proportional fractional integral operators involving continuous strictly increasing function. Our findings are generalization of some results that existed in the literature.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new Ostrowski type fractional integral inequalities for generalized $(r;g,s,m,varphi)$-preinvex functions via Caputo $k$-fractional derivatives

In the present paper, the notion of generalized $(r;g,s,m,varphi)$-preinvex function is applied to establish some new generalizations of Ostrowski type integral inequalities via Caputo $k$-fractional derivatives. At the end, some applications to special means are given.

متن کامل

Generalized Hermite-Hadamard type inequalities involving fractional integral operators

In this article, a new general integral identity involving generalized fractional integral operators is established. With the help of this identity new Hermite-Hadamard type inequalities are obtained for functions whose absolute values of derivatives are convex. As a consequence, the main results of this paper generalize the existing Hermite-Hadamard type inequalities involving the Riemann-Liou...

متن کامل

Some Weighted Integral Inequalities for Generalized Conformable Fractional Calculus

In this paper, we have obtained weighted versions of Ostrowski, Čebysev and Grüss type inequalities for conformable fractional integrals which is given by Katugompola. By using the Katugampola definition for conformable calculus, the present study confirms previous findings and contributes additional evidence that provide the bounds for more general functions.

متن کامل

Hermite-Hadamard type inequalities for the generalized k-fractional integral operators

We firstly give a modification of the known Hermite-Hadamard type inequalities for the generalized k-fractional integral operators of a function with respect to another function. We secondly establish several Hermite-Hadamard type inequalities for the generalized k-fractional integral operators of a function with respect to another function. The results presented here, being very general, are p...

متن کامل

Some new Hardy-type inequalities for Riemann-Liouville fractional q-integral operator

*Correspondence: [email protected] 1Luleå University of Technology, Luleå, 971 87, Sweden 2Narvik University College, P.O. Box 385, Narvik, 8505, Norway Full list of author information is available at the end of the article Abstract We consider the q-analog of the Riemann-Liouville fractional q-integral operator of order n ∈ N. Some new Hardy-type inequalities for this operator are proved and dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Foundations

سال: 2023

ISSN: ['2673-9321']

DOI: https://doi.org/10.3390/foundations3010005